Zwillinge
Die Wissenschaft der Zwillingsbildung (Symmetrieanalyse, Charakterisierung, Beschreibung), ein Spezialgebiet der Kristallographie, wird Geminographie
genannt
Das Studium von Zwillingskristallen geht auf die allerersten Anfänge der Kristallographie als Wissenschaft zurück; nicht unerheblich aus diesem Grunde wird die Idee, bzw. das Konzept eines Zwillingskristalls oft mit einem makroskopischen Gebäude assoziiert. Moderne Studien im Nano-Bereich haben gezeigt, daß die Bildung von Zwillingen schon zu einem sehr frühen Stadium der Kristallbildung auftreten kann. Aufgrund dieser Erkenntnisse drängt sich die Forderung auf, die Bildungsmechanismen und die Angrenzung zu unterschiedlichen Kategorien neu zu überdenken. Insbesondere sollten Vergleiche zwischen Zwillingen und bestimmten Unterkategorien modularer Strukturen stattfinden; d.h., solche modularen Strukturen, welche durch die Wiederholung desselben Moduls resp. Modulpaare, welche zu einer Symmetrieoperation im Verhältnis stehen, gebildet werden.
In der mineralogisch-kristallographischen Literatur gibt es mehrere unterschiedliche Definitionen für Zwillinge und Zwillingsbildung. Besonders bemerkenswert ist der Unterschied zwischen der kristallographisch-mineralogischen Definition, welche die Gitter-Terminologie benutzt und der physikalischen Definition, welche oft auf phänomenologischen Konzepten beruht (am typischsten bei Transformationszwillingen).
Aufgrund dieser unterschiedlichen Anschauungen gibt es verschiedene Klassifikationen, welche sich nur teilweise überlappen. Ein Konsens oder eine Vereinbarung, welche alle Definitionen zu Zwillingen und zur Zwillingsbildung umfasst, scheint immer noch in weiter Ferne zu liegen.
Ein weiterer Unterschied in der kristallographisch-mineralogischen Tradition ist die Uneinigkeit, welche von der sogenannten "Deutschen Schule" und der sogenannten "Französischen Schule" herrührt (die Deutsche Schule privilegiert die morphologischen Zwillingselemente, gemessen wurde mit Kontakt- oder optischen Goniometern; die französische Schule gibt den reticularen Zwillingselementen, basierend auf dem reziproken Gitter, Vorrang).
Definition
Geminographische Definition
nach (Takeuchi,1997; Ferraris et.al., 2004)
Zwillinge sind heterogene Gebäude, welche durch zwei oder mehr homogen-strukturell dreiperiodische Individuen (Module) im Verhältnis zu einer Punktgruppen-Operation gebildet werden. Daraus resultiert, daß der Zwilling selbst keine homogene Kristallstruktur besitzt. Homogene Gebäude, welche durch strukturell weniger als dreiperiodische Module gebildet werden, werden als Zellen-Zwillinge bezeichnet. Die Zellen-Zwillings-Operation kann eine translationale Komponente haben.
Aktuelle kristallographische Definition
Die nachstehend aktuellste Definition wurde von der IUCCMTC (International Union of Crystallography, Commission on Mathematical and Theoretical Crystallography) im Jahr 2005 erstellt.
Verzwilligung ist die orientierte Vergesellschaftung (association) von zwei oder mehr Individuen der gleichen kristallinen Phase, bzw. von individuellen Kristallen der gleichen chemischen und kristallographischen Spezies, in welcher Paare von Individuen mit einer geometrischen Operation mit dem Begriff Zwillings-Operation in Verbindung gebracht werden. Die Zwillings-Operation ist eine Symmetrie-Operation für das Zwillingsgebäude, aber nicht für die Individuen. Die Zwillings-Operation gehört nicht zur Symmetrie des Kristalls, da diese ein Parallelwachstum anstelle eines Zwillings erzeugen würde. Zwillingsgesetze
sind das Charakteristikum aller Zwillings-Operationen, welche zwei verzwillingte Individuen ineinander transformieren. Das Zwillingselement
ist das geometrische Element, nach welchem die Zwillings-Operation verläuft. (Friedel, 1904; Nespolo, 2005).
- Der Begriff Individuum
(Individuen) wird gebraucht, um einen Kristall eines Zwillings zu bezeichnen. Bei manchen Autoren auch als "Komponente" bezeichnet.
- Der Begriff Einzelkristall
wird für einen nicht-verzwillingten Kristall verwendet.
Allgemeine Definition - Kristalle als Produkt von Verwachsungen
- Ein Zwilling ist eine gesetzmäßige Verwachsung von individuellen Kristallen der gleichen chemischen und kristallographischen Spezies. Die Kristallbereiche liegen parallel zueinander und sind geometrisch durch ein Symmetrieelement ineinander überführbar.
- Zwillinge sind zwei individuelle Kristalle, welche regulär um eine Spiegelebene verwachsen sind.
- Zwillinge sind zweidimensionale Kristallbaufehler, welche man als Sonderfall der Stapelfehler betrachten kann. (zwischen geometrischem und chemischem Stapelfehler). Hat ein Kistall nicht nur einen Stapelfehler, sondern wächst so, daß sich die Packungsfolge (sequence) einer dichtesten Kugelpackung umkehr, so entsteht ein Zwillingskristall.
- Zwillinge gibt es in allen Kristallsystemen
Bei der Bildung von Mineralien entstehen unterschiedliche Arten der Verwachsung von mehreren Kristallen.
- Parallelverwachsungen derselben Kristallart nach Zusammensetzung (Stoff), Symmetrie und Struktur. Die indizierten Flächen und Kanten der miteinander verwachsenen Individuen liegen parallel zueinander; durch die Verwachsung entstehen keine zusätzlichen Symmetrieelemente. Kristalle, welche aneinander wachsen, können Zwillingen ähneln. Dieses Parallelwachstum reduziert ganz einfach die Systemenergie und ist keine Zwillingsbildung (Verzwilligung).
- Zwillinge sind Verwachsungen zweier Einzelkristalle der gleichen Kristallart oder zweier Modifikationen, bei welcher ein zusätzliches, am Einzelkristall nicht vorhandenes Symmetrieelement auftritt.
- Parallelverwachsungen und Zwillinge sind chemisch-homogene Verwachsungen.
- Epitaxie bedeutet zweidimensional gesetzmäßige orientierte Verwachsungen von verschiedenen Kristallarten, bzw. das Aufwachsen einer Substanz auf einer anderen. Die Verwachsung muß nicht kristallographisch orientiert sein. Wenn beide Kristallarten sich in einer Ebene berühren, spricht man von Epitaxie oder orientiertem Aufwachsen. Umwächst ein Kristall den anderen orientiert dreidimensional, spricht man von orientiertem Einwachsen oder von Endotaxie. Distaxie ist das Überwachsen eines Kristalls, welches nicht in kristallographischer Kontinuität mit dessen Kern (Ausgangskristall, Nucleus) steht. Als Topotaxie bezeichnet man Reaktionen von Kristallen, welche zu einer neuen Kristallphase mit einer strukturellen Orientierungsrelation zum Ausgangskristall führen. Epitaktisch und endotaktische verwachsene Kristalle sind chemisch-inhomogen.
(Quelle: Weiner, K.L., 1980)
Zwillingsgesetze
Definition der Zwillingsgesetze
Durch Inversion (Spiegelung) an einer Zwillingsebene und durch Drehung um eine Zwillingsachse um 180o lassen sich die Einzelkristalle zur Deckung bringen. Diese Zwillingselemente
werden im Zwillingsgesetz
durch die Millerschen Indizes ausgedrückt.
Durch die Verzwilligung wird eine Erhöhung der Symmetrie gegenüber dem Einzelkristall erreicht. Charakteristisches Merkmal für Zwillinge sind einspringende Winkel
, die bei Einzelkristallen nicht auftreten können, bei Zwillingen aber nicht auftreten müssen.
Die bekanntesten Zwillingsgesetze
- Pierre-Levee
- Sardinien
- Spinell
- Staurolith
- Stempel
- Tartan
- Wheal Coats
Japaner Zwilling: Verzwillingung von Tiefquarz nach der Dipyramide II Stellung (1 1 –2 2). Die Prismenachsen der verzwillingten Kristalle schneiden sich hierbei im Winkel von 84°33’, was den Zwillingen eine charakteristische, herzförmige Form verleiht.
Symmetrieanalyse von Zwillingskristallen
Die komplette geminographische Analyse eines Zwillingskristalls berücksichtigt drei wesentliche Aspekte:
- Die Symmetrie-Verhältnisse im direkten Raum, bezogen auf die Individuen, das Kristallgitter und das Zwillingsgitter
- Die Symmetrieverhältnisse im reziproken Raum und der Effekt der Verzwilligung auf die Diffraktionsmuster
- Die Morphologie der Zwillinge, so wie sie in ihren Formen auftreten
TLS und TLQS
Donnay & Donnay (1974) klassifizierten die Zwillingsbildung in zwei Kategorien
auf der Grundlage des Neigungsverhältnisses ?, welches der Winkel ist, der die metrische Symmetrie-Abweichung des Kristallgitters gegenüber dem Zwillingsgiiter mißt.
Ein oder mehr Symmetrieelemente für das Gitter gehören nicht zur Punktgruppe des Kristalls. (Motiv, Struktur). Dieses Element kann insofern als Zwillingselement agieren, indem es ein oder mehrere Individuen mit unterschiedlicher Richtung produziert (abhängig von der Anordnung der Elemente), deren Gitter jedoch insgesamt und exakt mit dem Original-Individuum übereinstimmt. Dies ist der einfachste Fall einer Verzwilligung, welcher als Meroedrie oder Meroedrische Verzwilligung bezeichnet wird. In diesem Falle stimmen das Zwillingsgitter und das Gitter des Individuums überein.
Es wurden vier Typen der Verzwilligung von Kristallen erkannt, welche auf den Tensor-Unterschieden ihrer Eigenschaften und einer neuen und rigorosen Definition der Prototyp-Symmetrie beruhen.
Diese vier Typen werden wie folgt kategorisiert:
Diese Klassifizierung wurde revidiert durch die Bezeichnung " komplette (translationale und Punkt-) Gittersymmetrie " des Zwillings und des Kristalls. Die neue Kategorie Reticulare Polyholoedrie
würde für solche Zwillinge eingeführt, wo das Zwillingsgitter die gleiche Punktsymmetrie, jedoch eine unterschiedliche Orientierung des individuellen Gitters hat. (D.h., bei Degeneration zum Zwillingsindex 1 (in einem parallelen Weg) entspricht die reticulare Meroedrie der metrischen Meroedrie und die reticulare Polyholoedrie der syngonischen Meroedrie.
(Wadhawan, V.K.; 1997; Nespolo, M., Ferraris, G.; 2004)
Begriffe der Zwillingsbildung und der Zwillingsgesetze
Zwillingsoperation
- Bezeichnung für eine Symmetrieoperation des Zwillingsgebäudes, jedoch nicht für die Individuen
Zwillingsgesetz
- ist die Festlegung aller äquivalenten Zwillingsoperationen, welche zwei Zwillingsindividuen ineinander überführen (transform)
Zwillingselemente (Symmetrieelemente)
- Zusätzliche geometrische Elemente wie Zwillingsebene, Zwillingsachse und Inversion, die sich am Einzelkristall nicht finden. Das Zwillingselement ist niemals Symmetrieelement in der dem verzwillingten Kristall zugehörigen Kristallklasse.
Zwillingsebene (twin plane, composition surface)
- Spiegelung an einer Ebene; Trennfläche, an der sich Packungssequenzen umkehren. Die Ebene, an der zwei Individuen vereinigt sind.
Inversion
- Punktspiegelung, bzw. Spiegelung an einem Symmetriezentrum
Zwillingsarten (geometrisch)
- Ebenenzwilling (Zwilling nach (hkl); (hkl) ist die Zwillingsebene. Zwillingsdomänen können durch Spiegelung an einer Ebenen ineinander überführt werden.Bsp.: Quarz nach dem Brasilianer Gesetz
- Achsenzwillinge (Zwilling nach uvw); (uvw) ist die Zwillingsachse. Geimeinsame Achse, welche nicht immer mit einer drei drei Achsen der Elementarzelle zusammentrifft Bsp.: Quarz nach dem Dauphinéer Gesetz
- Inversionszwillinge: Zwillinge, bei welchen Bild und Spiegelbild einer nicht-zentrosymmetrishen Struktur mioteinander verwachsen sind.
Zwillingsachse
- Drehung um 180o um eine Achse
Zwillingsnaht
- Charakteristikum mancher Zwillinge, bei welchen man die Verwachsung der beiden Individuen äußerlich an Zwillingsnähten erkennen kann.
Zwillingsstreifung
- Charakteristikum für Zwillinge, bei welchen Streifensysteme unter definierten Winkeln über die Kristallflächen verlaufen.
Millersche Indizes
Zwillingsgitter
- Das Gitter, welches zum gesamten verzwillingten Gebäude gehört. Der Begriff wurde 1940 von Donnay definiert als Gitter, welches für seine einfachen Translationen die Kanten einer einfachen oder multiplen Zelle hat, welche entweder rigoros oder ungefähr mit mehr Symmetrie als der Kristall ausgestattet ist. Für Zwillinge mit geneigten Achsen ist diese definition nicht sehr befriedigend; Tatsache ist, daß die Symmetrie des Zwillingsgitters mit der Durchschnitts-Symmetrie der Individuen in ihrer jeweiligen Richtung verglichen werden muß, welche allgemein eine Untergruppe der Gruppe des Individuums ist.
Zentrosymmetrische Kristalle
- Zwillinge, deren Einzelkristalle ein Symmetriezentrum aufweisen
Einspringende Winkel
- Charakteristikum für Zwillinge (jedoch nicht alle, da sie auch bei Parallelverwachsungen auftreten können).
Symmetrieelemente
- Als Symmetrieelemente kommen in der Regel "m" und "2" in Frage
Verwachsungsarten der Zwillinge (morphologisch)
Ein Zwilling mit einer definierten Zwillingsebene, welche die beiden Individuen trennt. Die Zwillingsebene ist gleichzeitig Verwachsungsebene. (Bsp.: Feldspat (Bavenoer und Manebacher Gesetz). Trennung (mit Ausnahmen) ist mit einem scharfen Messer möglich.
Durchdringunsgzwillinge mit einer irregulären Zwillingsebene. Beide Individuen durchdringen sich gegenseitig, die Verwachsungsgrenzen sind unregelmäßig, seltener kristallographische orientierte Grenzen. (Bsp.: Feldspat (Karlsbader Gesetz), Fluorit, Pyrit, Diamant, Titanit, Quarz nach dem Dauphinéer Gesetz (unregelmäßige Verwachsungsgrenzen), Quarz nach dem Brasilianer Gesetz (regelmäßige Verwachsungsgrenzen). Die Trennung ist schwierig bis unmöglich.
Zwei Kristalle mit niedriger Symmetrie ergänzen sich zu einer Form scheinbar höherer Symmetrie (Bsp.: Pyrit nach dem Eisernen Kreuz)
Zwillinge und Kristallstruktur
(nach Weiner, K.L., 1980; zitiert unter Vorbehalt, ohne Berücksichtigung neuester Symmetrieanalysen)
Durch kristallstrukturelle Untersuchungen zeigte sich, dass
- die Zwillingsebene keine Symmetriebene ist
- die Zwillingsachse keine geradzahlige Drehachse der Kristallstruktur der beiden, am Zwilling beteiligten Einzelkristalle ist. (wenn dem so wäre, läge eine Parallelverwachsung vor).
Zwei denkbare Fälle sind an Zwillingen realisiert:
- Ein Teilgitter der Struktur durchläuft ungestört beide verzwillingten Kristalle hindurch (kohärente Zwillinge). (Bsp.: Pyrit mit einem kohärenten Teilgitter, S2-Gruppen in Zwillingsstellung zur Ebene {110}.
- Alle Teilgitter der Struktur befinden sich in Zwillingsstellung zueinander (inkohärente Zwillinge). (Bsp.: Feldspat, Markasit)
Entstehung von Zwillingen
Gesetzmäßige Verwachsung, bei der einzelne Kristallbereiche durch zusätzliche Symmetrieoperaionen (durch (scheinbare) Erhöhung der Symmetrie ineinander überführt werden können. Zwillinge können während des Wachstums (Wachstumszwillinge), durch Phasenwechsel (Phasenübergänge von hohen Temperaturphasen zu niedrigen Temperaturphasen; Umwandlungszwillinge, Inversionszwillinge; bedingt Transformationszwillinge) oder durch mechanische Beanspruchung entstehen (Deformationszwillinge).
Die meisten Kristalle wachsen (>Kristallwachstum), indem sie Strutureinheiten (Atome, Ionen, Moleküle) hinzufügen ("anschichten")(jeweils eine Schicht zu einer bestimmten Zeit, in einem stark vereinfachten Modell). Wenn die erste Schicht A ist und die nächste B (in unterschiedlicher Position, dann die nächste C, gefolgt bei einem anderen A - usw. - dann bildet sich eine Struktur nach der Folge
ABCABCABCABCABC
.......
Viele Mineralien bilden sich durch solche Stapelsequenzen. Kommen jedoch Fehler während des Wachstums vor, können sich Zwillinge bilden. Wenn die nächste Schicht (Struktureinheit) falsch gestellt ist und eine falsche Position einnimmt, bildet sich folgende Packungssequenz
ABCABCABC
ACBACBACBACBA
(die C-Schicht nahe der mittleren A-Schicht ist falsch, weil hier die nächste B-Schicht stehen sollte. Der Rest der Stapelung wird dann wiederholt, als wenn nichts geschehen wäre und der Kristall wächst in beide Richtungen nach außen, bis das Wachstum abgeschlossen ist. Direkt durch die Mitte der A-Schicht entsteht eine Spiegelebene; die rechte Seite des Kristalls ist ein Spiegelbild der linken Seite. Diesen Spiegel kann man besser durch eine vertikale Linie darstelle, welcher eine Spiegelebene wie folgt produziert:
ABCABCABC | CBACBACBA
Anmerkung: Nicht alle Zwillinge werden in dieser Weise gebildet; das Beispiel dient lediglich dazu, eine Vorstellung zu geben, wie ein Zwillingskristall gebildet werden kann.
Zwillingsarten und deren Entstehung
- Sind das Resultat einer Unterbrechung oder eines Wechsels im Gitter während der Bildung oder während des Wachstums, was auf einer möglichen Deformation eines größeren Substitutions-Ions beruht. Wachstumszwillinge sind Zwillinge mit großen Domänen, welche enstehen, wenn Kristalle durch Keimwachstum aus Lösungen und Schmelzen gezogen werden. Dabei wachsen die Domänen, von einem Keim beginnend, in verschiedene Richtungen.
- sind das Resultat eines Wechsels im Kristallsytem während der Abkühlung, wo eine Form instabil wird und die Kristallstruktur sich in eine andere, stabilere Form reorganisieren oder transformieren muß.
Meist lamellar nach Phasenumwandlung. Bei verschiedene Mineralien bestehen Modifikationen, die z.T. abhängig von der Bildungstemperatur entstehen. Durch Phasenübergänge können sich hochsymmetrische Hochtemperatur- in niedersymmetrische Tiefftemperaturformen umwandeln, wobei bei Hochtemperaturformen das äußere Erscheinungsbild erhalten bleibt. Bei der Transformation bilden sich miteinander verzwillingte Lamellen der Tieftemperaturform; tw. ist eine Flächenstriefung an den Umwandlungszwillingen erkennbar. (Bsp.: Hochquarz > Tiefquarz; Hochleucit > Leucit)
Achtung: Bei manchen Autoren werden auch polysynthetische Zwillinge als > Transformationszwillinge bezeichnet). (Bsp.: Transformations-pseudohexagonale Drillinge von Cordierit).
- Beim klassengleichen Übergang können Antiphasendomänen bzw. Inversionszwillinge entstehen
- sind das Resultat von Stress (Scherkräfte) auf dem Kristall, wobei Teile eines Kristalls in eine Zwillingsstellung überführt werden können. Deformations-Verzwilligung ist ein allgemeines Resultat der Regionalmetamorphose.
Bei der Sammelkristallisation (d.h. das Zusammenwachsen von Kristalliten zu größeren Kristallen) berühren sich die wachsenden Kristalle derart, daß sie in Zwillingsstellung zueinander stehen und als (i.d.R. selten idiomorphe) Rekristallisationszwillinge weiterwachsen. Rekristallisationszwillinge entstehen wie die Deformationszwillinge bei der Regionalmetamorphose, beim Brennen von Keramik und beim Tempern.
(Viellinge, Zwillingsstöcke, auch als Wiederholungszwillinge (repetaed twins) bezeichnet; bzw. ein Zwilling, der aus drei oder mehr miteinander verzwillingten Teilen nach dem gleichen Gesetz besteht). Die Zwillingsbildung nach dem gleichen Zwillingsgesetz kann sich mehrfach wiederholen.
Multiple Zwillings- Pseudosymmetrien (s.u. > Mimetische Kristalle) und zufällige Gitter-metrische Symmetrien , bei welcher mehr als zwei Individuen im Verhältnis zu den Zwillingselementen stehen, werden oft ohne Bezugnahme auf die klassische Nomenklatur (Friedel, Donnay) beschrieben. Einige Beispiele zur Nomenklaturabweichung werden von Nespolo und Ferraris (2004) redifiniert. Bei manchen Autoren wird kaum ein Unterschied zwischen "echten" mutiplen Zwillingen" und "mimetischen Kristallen" gemacht, bzw. nicht auf die Pseudosymmetrie näher eingegangen.
Ein multipler Zwilling (Wiederholungszwilling), in welchem die sukzessiven Zwillingsebenen nicht parallel sind (Bsp.: Chrysoberyll)
Ein multipler Zwilling (Wiederholungszwilling), in welchem alle sukkzessiven Zwillingsebenen parallel sind. (bei mehrfacher Wiederholung bis zu mikroskopischen Zwillingslamellen). Polysynthetische Zwillinge entstehen, wenn Kristalle beim Abkühlen einen kristallographischen Phasenübergang von einer höheren zu einer niedrigeren Symmetrie durchlaufen. Typisch für polysynthetische Zwillinge ist die charakteritische Flächenstreifung, an welcher man abzählen kann, wie oft sich das Zwillingsgesetz wiederholt (engl: stacked twin layers) (Bsp.: Markasit, Zwillinge nach dem Albit-Gesetz bei Plagioklasen (Zwillings- und Verwachsungsebene {010} wichtig für die Unterscheidung der Plagioklase von Orthoklas), Glimmer; Calcit-Zwillinge nach {0112})
Gleichzeitiges Auftreten von zwei Zwillingsgsetzen
Rutil (und Cassiterit) können multiple Zwillinge nach zwei Gesetzen bilden (nach {101} und {301}; bei Rutil treten beide Gesetze gleichzeitig auf unter Bildung der sogen. Sagenit-Gitter.
Echte und mimetische/pseudosymmetrische multiple Zwillinge
Pseudokubische Zwillinge (Bsp.: Boleit)
Drillinge (engl.: trilling)
Drei individuelle Kristalle, welche regulär um Spiegelebenen verwachsen sind; bzw. ein Mineral, welches aus drei Zwillingskomponenten besteht.
- Hexagonale Drillinge (Bsp.: Cassiterit)
- Pseudohexagonale Drillinge (Bsp.: Aragonit, Cerussit, Epididymit, Chrysoberyll, Leadhillit, Strontianit, Phakolith, Cordierit)
- Pseudohexagonale pyramidale Drillinge (Bsp.: Witherit)
- Pseudohexagonale zyklische Drillinge (Bsp.: Chalkosin)
- Sechsstrahlige Drillinge (Bsp.: Arsenopyrit, Tridymit)
- Durchkreuzungsdrillinge (Bsp.: Phakolith, Willhendersonit)
- Stempel-Drillinge (Bsp.: Harmotom und Phillipsit nach dem Perier-Gesetz)
Vierlinge
- Vierling (Bsp.: Phillipsit (Morvenit))
- Pseudotetragonale Vierlinge (Bsp.: Bournonit, Gismondin)
Sechslinge
(Bsp. Rutil, Alexandrit)
Achtlinge
(Bsp. Rutil, D'Achiardit, Harmotom, Phillipsit, Stilbit)
Zwölflinge
- Pseudokubische Zwölflinge (Bsp.: Phillipsit nach dem Stempel-Gesetz)
Sechzehnlinge
(Bsp.: Harmotom nach dem Stempel-Gesetz)
Vierundzwanziglinge
(Bsp.: Harmotom nach dem Stempel-Gesetz)
Wendezwillinge
- Wenn einzelne Individuen über verschiedene Flächen der gleichen kristallographischen Form verwachsen, enstehen Wendezwillinge. Hierbei ist eine beliebige Wiederholung der Zwillingsgesetze nicht möglich, weil irgendwann das erste Individuum mit einem x-ten Individuum (x= 3.4.5. ....) den Raum streitig macht.
Mimetische Kristalle - Pseudosymmetrie
(griech.: mimes = nachahmen, Schauspieler)
Durch die Verwachsung verzwillingter Kristalle nach dem Prinzip der > Wendezwillinge bilden sich oft mimetische Zwillinge. Diese sind teilweise mit einer Durchkreuzung der einzelnen Individuen verbunden. Mimetische Zwillinge zeigen eine Pseudosymmetrie. Die bekanntesten sind Aragonit, Chrysoberyll, Phillipsit (s.o.)
Unechte Zwillinge
Unechte Japaner Zwillinge
Zitiert : Hochleitner, R.,1980: " Bei echten Japaner Zwillingen schneiden sich die c-Achsen der der beiden Kristalle unter einem Winkel von 84°33'. Carakteristisch ist, daß ein Paar von Prismenflächen der beiden Individuen parallel liegt; sind beide Einzelkristalle gleich groß, gehen diese Prismenflächen ineinander über. Liegen die Prismenflächen nicht parallel, handelt es sich nicht um einen Japaner Zwilling, auch wenn der Winkel zwischen den beiden Individuen stimmen würde. Ein weiteres Charakteristikum der Japaner Zwillinge ist, daß sich die Streifungssysteme auf beiden Prismenflächen unter einem Winkel von 95°27' schneiden. Die Individuen sind nicht selten tafelig verzerrt (muß aber nicht die Regel sein); auch völlig normale Quarze können deartige Zwillinge bilden.".
Unechte Pyrit-Zwillinge
Besonders von Navajún in Spanien stammen hervorragende Pyritwürfel- und Hexaeder als Einzelkristalle sowie prächtige auf- und ineinander gewachsene Aggregate und Gruppen , die aufgrund ihres Ineinanderwachsens den Eindruck von Zwillingen hinterlassen, jedoch kristallographisch weder echte noch mimetische Zwillinge sind.
Bekannte Zwillingsbildungen
Albit
(polysynthetische Zwillinge nach {010}
nach dem Albit-, Periklin- oder kombiniertem
Albit-Periklin-Gesetz (auch Tartan-Gesetz genannt))
|
Aragonit
(zyklische Zwillinge, pseudohexagonal)
|
Bournonit
(multiple Zwillinge; pseudotetragonale Vierlinge)
|
|
|
|
Calcit
|
Calcit
(meist Kontaktzwillinge, aber auch polysynthetische Zwillinge als Folge von Deformationen)
|
Caracolit
(Drillinge ähnlich wie Aragonit)
|
|
|
|
Calcit
(Penetrationszwillinge)
|
Cassiterit
(sogen. Visiergraupen; Zwillingsfläche {101}; lamellar polysynthetische Zwillinge)
|
Cassiterit
Zwilling nach {101}
|
|
|
|
Cerussit
(zyklische Zwillinge und Drillinge)
|
Chabasit - Var. Phakolith
(multiple Zwillinge)
|
Chalkosin
(pseudohexagonale Drillinge; Umwandlungszwillinge)
|
|
|
|
Fluorit
(Penetrationszwillinge nach {111}
|
Fluorit
(Zwilling nach dem Spinellgesetz)
|
Galenit
(meist flachtafelige Zwillinge nach {111}
|
|
|
|
Gips
(Schwalbenschwanz- und Montmartre-Zwillinge)
|
Gips
(Montmartre-Zwilling)
|
Hämatit
(polysynthetische Zwillinge nach {1011} Durchkreuzungszwillinge)
|
|
|
|
Rutil
(Sagenit-Gitter (Sechslinge))
|
Rutil
(Zwilling nach {101})
|
Sphalerit
(Kristall mit Zwillingslamellen um 111))
|
|
|
|
Stannit
(Penetrationszwillinge auf {102} als Zwillingsachse und nach {112} als Zwillingsebene)
|
Staurolith
(Penetrationszwillinge/Ebenenzwillinge nach dem Staurolithgesetz)
|
Tetraedrit
(Zwillinge nach 111)
|
|
|
|
Beschreibung von Zwillingen nach der Charakteristik
- Ellenbogenzwilling (Rutil)
- Eisernes Kreuz (Pyrit)
- Fischschwanz (Herderit, Epididymit)
- Hahnenkamm (Markasit)
- Kniezwilling (Cerussit, Rutil)
- Montmartre (Gips)
|
- Rädelerz (Bournonit)
- Schmetterling (Calcit)
- Schwalbenschwanz (Gips)
- Stern (Muskovit, Arsenopyrit, Enargit)
- Visiergraupen (Cassiterit)
|
Zusätzliche Bilder und Informationen in diesem Lexikon
Literatur
- Blount, A., Shulman, W., 1977; Twinning in minerals. Min.Record : 8
, 350-361
- Buerger, M.J.; 1945; The genesis of twin Crystal. Am. Min. :30
, 469-482
- Buerger, M.J., 1962; X-Ray Crystallography; 53-67
- Cahn, R.W., 1954; Twinned crystals. Adv. Phys.:3
, 202-445
- Curien, H., Donnay, J.D.H.; 1959; The symmetry of the complete twin. Am. Min. :44
, 1067-1070
- Donnay, G., Donnay, J.D.H.; 1974; Classification of triperiodic twinsCan. Min. :12
, 422-425
- Friedel, G., 1904; Etude sur les groupements cristallins. Extr. Bull. de la Soc. de l`Industrie Mínerale; 4eme serie, Vol. III und IV
- Friedel, G., 1926; Lecons de Cristallographie
- Hartman, P.; 1956: On the morphology of growth twins; Z. Kristallogr. : 107
, 225-237
- Hurlbut, C.S., Klein, C., 1985; Manual of Mineralogy, 2oth edit.
- Mallard, E., 1885; Sur la théorie des macles. Bull. Soc. fr. míneral :8
, 452-469
- Nespolo, M., 2005; Twinned crystals; Internat. Union of Crystallography (CMTC); Research Theme
- Nespolo, M., Ferraris, G., 2004; Applied geminography - Symmetry analysis of twinned crystals and definition of twinning by reticular polyholohedry. Acta Cryst. :A60
, 89-95
- Santoro, A., 1974; Characterization of twinning. Acta Cryst. :A74
, 24-231
- Senechal, M., 1980; The genesis of growth twins; Sov. Phys. Crystallogr.: 25
, 520-524
- Wadhawan, V.K., 1997; A tensor classification of twinning in crystals. Acta Cryst : A53
, 546-555
- Weiner, K.L., 1980; Zwillinge. Lapis :5
, 2, 6-9
- Massimo Nespolo, Bernd Souvignier: Twinned crystals and how to describe them. Crystallography Reviews Volume 30, Issue 2 (2024) S. 135-181. | doi:10.1080/0889311X.2024.2330080
Weblinks
Quellangaben
Einordnung