Mineralienatlas ist seit 2001 die Plattform für an Geologie, Mineralogie, Paläontologie und Bergbau interessierte Menschen. Wir verfügen über eine umfangreiche Datenbank für Mineralien, Fossilien, Gesteine und deren Standorte. Mineralienatlas beschränkt sich nicht auf einen Ausschnitt, wir bringen Informationen zusammen und informieren umfassend.

Um unsere Informationen stetig vervollständigen zu können, benötigen wir Ihre Unterstützung. Bei uns kann und soll jeder mitmachen. Derzeit nutzen und erweitern 10458 Mitglieder den Mineralienatlas kontinuierlich. Jeden Monat nutzen hunderttausende Besucher unsere Webseite als Informationsquelle.
 
Geolitho Stiftung gemeinnützige GmbH
Geolitho Stiftung gemeinnützige GmbH ist der gemeinnützige Träger des Mineralienatlas, der Lithothek, der Geolitho-Sammlungsverwaltung und dem Marktplatz und Shop von Sammlern für Sammler. Die Stiftung fördert die Volksbildung auf dem Gebiet der Mineralogie, der Lagerstättenkunde, Geologie, Paläontologie und des Bergbaus durch das Betreiben, den Erhalt und weiteren Ausbau erdwissenschaftlicher Projekte.
 
https://www.edelsteine-neuburg.de
https://crystalparadise.de/
https://www.chiemgauer-mineralien-fossiliensammler.de/
https://www.mineral-bosse.de
Die 63. Rhein-Neckar-Mineralienbörse in Walldorf
https://www.lithomania.de
 
Geo­lo­gisch ge­se­hen ist der Kai­ser­stuhl ein jun­ges vul­ka­ni­sches Ge­bir­ge ähn­lich der Ei­fel und dem He­gau. Im Alt­ter­ti­är vor ca. 60 Mio. Jah­ren wur­de mit dem Ab­sin­ken des Ober­r­hein­tal­gr­a­bens ein Pro­zess ab­ge­sch­los­sen, der be­reits in der un­te­ren Krei­de mit dem Be­ginn der al­pi­di­schen Fal­tung be­gon­nen hat ... mehrGeologisch gesehen ist der Kaiserstuhl ein junges vulkanisches Gebirge ähnlich der Eifel und dem Hegau. Im Alttertiär vor ca. 60 Mio. Jahren wurde mit dem Absinken des Oberrheintalgrabens ein Prozess abgeschlossen, der bereits in der unteren Kreide mit dem Beginn der alpidischen Faltung begonnen hatte: Heraushebung und Überdehnung des variszisch-mesozischen (Trias + unterer Jura) Gebirgsblockes Schwarzwald-Vogesen-Odenwald. Vor etwa 27 Mio. Jahren kam es dann in den am stärksten abgesenkten Teilen des Oberrheintalgrabens am Kaiserstuhl, aber auch in der Eifel, am Hegau, bei Urach und im Odenwald zu einem basischen Vulkanismus.
Appetithäppchen Bild
Geo­lo­gi­sches Por­trait - Ver­wit­te­rung und Ero­si­onUnter Verwitterung versteht man exogene geodynamische Prozesse an der nahen Erdoberfläche, die zum Zerfall und zur Zersetzung von Mineralien und Gesteinen führen, wobei unter allmählichem Verlust von Bestandteilen die Konsistenz und Form des Minerals oder Gesteins zerstört wird. Die Gesteinszerstörung ist Folge physikalischer, chemischer und biologischer Prozesse, welche sowohl räumlich als auch zeitlich eng miteinander verknüpft sind. Der eigentliche Gesteinszerfall ist ein Produkt unterschiedlicher physikalischer Prozesse, wobei Wasser, Wind und Temperatur die wichtigsten Verwitterungsverursacher sind. Chemische Prozesse führen zu Um- und Neubildung von Gesteinen, wobei die Mineralien in gelöste Stoffe überführt werden. Die wichtigsten Einflussfaktoren der Verwitterungsintensität sind das Klima, die Verwitterungsarten, der Mineralbestand der Gesteine und der Zeitpunkt der Heraushebung der Gesteine an die Oberfläche. Ein besonderes Merkmal ist, dass Verwitterungsprozesse nur bei Gesteinen in situ stattfinden, wobei kein Transport stattfindet. Verwitterung bei Salzen ist das Austreten von Kristallwasser bei gewöhnlicher oder höherer Temperatur, wobei in der Regel der Kristall zerfällt.

Auf die Verwitterung folgt die flächenhaft wirkende Abtragung (Denudation). Erosion ist die Abtragung, der Transport und die Verlagerung von Gesteinen durch Fließgewässer, durch Meeresbrandungen, durch Niederschläge und durch Gletscher. Die wichtigsten Erosionsprozesse sind die Abtragung durch fließendes Wasser (welches Einschnitte, Vertiefung und Verbreiterung von Flussbetten bewirkt), durch fluviatilen Transport (Verlagerung von Material), durch abfließendes Regenwasser oder auch durch Sickerwasser; durch Wind (aeolischer Transport), Deflation (Ausblasung verwitterten Materials in ariden gebieten), Abtragung durch Meeresbrandungen (marine Erosion oder Abrasion), durch starke Niederschläge (Abspülung) und durch Gletscher, welche die Oberfläche durch ihr großes Gewicht und das mitgeführte Gesteinsmaterial zerstören. Bei der Erosion findet im Gegensatz zur Verwitterung ein Transport statt.
Un­ter Ver­wit­te­rung ver­steht man exo­ge­ne geo­dy­na­mi­sche Pro­zes­se an der na­hen Erd­ober­fläche, die zum Zer­fall und zur Zer­set­zung von Mi­ne­ra­li­en und Ge­stei­nen füh­ren, wo­bei un­ter all­mäh­li­chem Ver­lust von Be­stand­tei­len die Kon­sis­tenz und Form des Mi­ne­rals oder Ge­steins zer­stört wird. Die Ge­steins­zer­störu ... mehrUnter Verwitterung versteht man exogene geodynamische Prozesse an der nahen Erdoberfläche, die zum Zerfall und zur Zersetzung von Mineralien und Gesteinen führen, wobei unter allmählichem Verlust von Bestandteilen die Konsistenz und Form des Minerals oder Gesteins zerstört wird. Die Gesteinszerstörung ist Folge physikalischer, chemischer und biologischer Prozesse, welche sowohl räumlich als auch zeitlich eng miteinander verknüpft sind. Der eigentliche Gesteinszerfall ist ein Produkt unterschiedlicher physikalischer Prozesse, wobei Wasser, Wind und Temperatur die wichtigsten Verwitterungsverursacher sind. Chemische Prozesse führen zu Um- und Neubildung von Gesteinen, wobei die Mineralien in gelöste Stoffe überführt werden. Die wichtigsten Einflussfaktoren der Verwitterungsintensität sind das Klima, die Verwitterungsarten, der Mineralbestand der Gesteine und der Zeitpunkt der Heraushebung der Gesteine an die Oberfläche. Ein besonderes Merkmal ist, dass Verwitterungsprozesse nur bei Gesteinen in situ stattfinden, wobei kein Transport stattfindet. Verwitterung bei Salzen ist das Austreten von Kristallwasser bei gewöhnlicher oder höherer Temperatur, wobei in der Regel der Kristall zerfällt.

Auf die Verwitterung folgt die flächenhaft wirkende Abtragung (Denudation). Erosion ist die Abtragung, der Transport und die Verlagerung von Gesteinen durch Fließgewässer, durch Meeresbrandungen, durch Niederschläge und durch Gletscher. Die wichtigsten Erosionsprozesse sind die Abtragung durch fließendes Wasser (welches Einschnitte, Vertiefung und Verbreiterung von Flussbetten bewirkt), durch fluviatilen Transport (Verlagerung von Material), durch abfließendes Regenwasser oder auch durch Sickerwasser; durch Wind (aeolischer Transport), Deflation (Ausblasung verwitterten Materials in ariden gebieten), Abtragung durch Meeresbrandungen (marine Erosion oder Abrasion), durch starke Niederschläge (Abspülung) und durch Gletscher, welche die Oberfläche durch ihr großes Gewicht und das mitgeführte Gesteinsmaterial zerstören. Bei der Erosion findet im Gegensatz zur Verwitterung ein Transport statt.
Appetithäppchen Bild
Bei dem Ko­cher­stol­len han­del­te es sich um ei­nen 150 m lan­gen, fast waa­ge­recht in den Berg ge­trie­be­nen Stol­len; da­ran sch­loß sich ein so­ge­nann­ter Brems­berg von vi­el­leicht 50 m Län­ge an, der in ei­ne Tie­fe von cir­ca 30 m führ­te. Vom En­de die­ses Brems­ber­ges aus wur­den 2 St­re­cken auf­ge­fah­ren, die ei­ne in ... mehrBei dem Kocherstollen handelte es sich um einen 150 m langen, fast waagerecht in den Berg getriebenen Stollen; daran schloß sich ein sogenannter Bremsberg von vielleicht 50 m Länge an, der in eine Tiefe von circa 30 m führte. Vom Ende dieses Bremsberges aus wurden 2 Strecken aufgefahren, die eine in nordwestlicher und die andere in südöstlicher Richtung. Die NWstrecke erreichte eine Länge von etwa 60 m, die SEstrecke eine solche von etwa 250 m. Von der NWstrecke war ein sogenannter Überhau (Luftloch) bis über Tage herausgearbeitet worden. Die Gänge wurden in den oberen Partien abgebaut, waren zum Schluß aber nur noch 25 - 30 cm mächtig und damit nicht mehr ... Ein Beitrag von Michael Kommer
Appetithäppchen Bild
Seit dem Al­ter­tum ist Sma­ragd auf­grund sei­ner Sc­hön­heit und sei­ner un­ge­wöhn­lich leb­haft grü­nen Far­be als Edel­stein be­gehrt. Je­doch - nach dem Spruch "Es ist nicht al­les Gold, was glänzt" - sind nicht al­le "Edel­stei­ne" mit die­ser at­trak­ti­ven Far­be auch tat­säch­lich Sma­ragd ge­we­sen. In der Ge­schich­te f ... mehrSeit dem Altertum ist Smaragd aufgrund seiner Schönheit und seiner ungewöhnlich lebhaft grünen Farbe als Edelstein begehrt. Jedoch - nach dem Spruch "Es ist nicht alles Gold, was glänzt" - sind nicht alle "Edelsteine" mit dieser attraktiven Farbe auch tatsächlich Smaragd gewesen. In der Geschichte finden sich dafür zahlreiche Beispiele. Immer wieder wurden neu entdeckte Mineralien, die mit bekannten und als Edelstein geschätzten Steinen in Farbe und Charakteristika übereinstimmten, fälschlich als echt gehandelt und verarbeitet. Eines dieser Mineralien, welches wegen seiner Farbe sehr lange als Smaragd galt, ist Dioptas. Ein Mineralienportrait geschrieben von Peter Seroka.
Appetithäppchen Bild
Das Mi­ne­ral Wul­fenit wur­de - so die all­ge­mein ver­b­rei­te­te Ver­si­on bzw. der all­ge­mein ver­b­rei­te­te Irr­tum - En­de des 18. Jh. vom ös­t­er­rei­chi­schen Je­sui­ten (Ab­bé), Bo­ta­ni­ker und Mi­ne­ra­lo­gen Franz Frei­herr von Wul­fen ent­deckt und von ihm in sei­ner be­rühm­ten "Ab­hand­lung vom Kärnth­ne­ri­schen Bleyspa­the" im ... mehrDas Mineral Wulfenit wurde - so die allgemein verbreitete Version bzw. der allgemein verbreitete Irrtum - Ende des 18. Jh. vom österreichischen Jesuiten (Abbé), Botaniker und Mineralogen Franz Freiherr von Wulfen entdeckt und von ihm in seiner berühmten "Abhandlung vom Kärnthnerischen Bleyspathe" im Jahr 1785 beschrieben und gezeichnet, obwohl es bereits 1772 eine Veröffentlichung des Siebenbürgener Mineralogen und Geologen Ignaz von Born gab, mit dem Titel: "Plumbum spatosum flavo-rubrum pellucidum" (von Annaberg in Niederösterreich). Von Wulfen selbst zitierte den berühmten Bergrat Scopoli, welcher in seiner "Einleitung zur Kenntnis der Fossilien" den kärntherischen Bleyspat als " ungestaltete, ockergelblichte, versteinerte Bleyerde, welche im Zentner 27 bis 30 Pfund Blei enthält " beschrieb... ein Beitrag von Peter Seroka
Appetithäppchen Bild
Mi­ne­ra­li­en­por­trait Ara­gonitAragonit besteht wie Calcit aus Calciumcarbonat. Das Mineral unterscheidet sich jedoch von Calcit durch seine interne Kristallstruktur. Während das Kristallsystem von Calcit trigonal ist, ist das von Aragonit rhombisch. Dichte Massen kleiner Aragonitkristalle sind schwierig von Calcit zu unterscheiden, werden sie jedoch größer, zeigen sie einen deutlich unterschiedlichen Habitus. Aragonitkristalle sind meist lang und nadelig, wohingegen Calcitkristalle eher stummelig sind oder sogen. „Hundezahn-Calcite“ zu bilden. Die Calcitkristalle sind oft rhomboedrisch, doch - Calcit ist ein Verwandlungskünster – kann das Mineral sehr kapriziös sein, wenn es zur äußeren Form kommt. Büschel nadeliger Aragonitkristalle sind auch als Frostwerk bekannt.

So mancher Mineraloge wäre ärgerlich, wenn man ihn daran erinnert, dass Aragonit und Calcit in vielen Höhlen glückliche Bettgenossen sind. Er wird auf seine Phasendiagramme verweisen und auf ihnen herumdeuteln, als wären es heilige Schriften und darauf bestehen, dass Aragonit bei solch niedrigen Drücken und Temperaturen auf keinen Fall stabil sein kann. Doch selbst in dem Moment, während er all dies zu erklären versucht, wachsen Aragonite weiter in alle Richtungen, trotzen der Schwerkraft, offensichtlich, um die Gesetze der Chemie und Physik herauszufordern. Ihr Geheimnis ist ein Kristallisationtrick, den man als „Magnesium-Vergiftung" (magnesium poisoning) bezeichnet.

Lesen Sie weiter in diesem spannenden Portrait von Peter Seroka.
Ara­gonit be­steht wie Cal­cit aus Cal­ci­um­car­bo­nat. Das Mi­ne­ral un­ter­schei­det sich je­doch von Cal­cit durch sei­ne in­ter­ne Kri­s­tall­struk­tur. Wäh­rend das Kri­s­tall­sys­tem von Cal­cit tri­go­nal ist, ist das von Ara­gonit rhom­bisch. Dich­te Mas­sen klei­ner Ara­gonit­kri­s­tal­le sind schwie­rig von Cal­cit zu un­ter­scheid ... mehrAragonit besteht wie Calcit aus Calciumcarbonat. Das Mineral unterscheidet sich jedoch von Calcit durch seine interne Kristallstruktur. Während das Kristallsystem von Calcit trigonal ist, ist das von Aragonit rhombisch. Dichte Massen kleiner Aragonitkristalle sind schwierig von Calcit zu unterscheiden, werden sie jedoch größer, zeigen sie einen deutlich unterschiedlichen Habitus. Aragonitkristalle sind meist lang und nadelig, wohingegen Calcitkristalle eher stummelig sind oder sogen. „Hundezahn-Calcite“ zu bilden. Die Calcitkristalle sind oft rhomboedrisch, doch - Calcit ist ein Verwandlungskünster – kann das Mineral sehr kapriziös sein, wenn es zur äußeren Form kommt. Büschel nadeliger Aragonitkristalle sind auch als Frostwerk bekannt.

So mancher Mineraloge wäre ärgerlich, wenn man ihn daran erinnert, dass Aragonit und Calcit in vielen Höhlen glückliche Bettgenossen sind. Er wird auf seine Phasendiagramme verweisen und auf ihnen herumdeuteln, als wären es heilige Schriften und darauf bestehen, dass Aragonit bei solch niedrigen Drücken und Temperaturen auf keinen Fall stabil sein kann. Doch selbst in dem Moment, während er all dies zu erklären versucht, wachsen Aragonite weiter in alle Richtungen, trotzen der Schwerkraft, offensichtlich, um die Gesetze der Chemie und Physik herauszufordern. Ihr Geheimnis ist ein Kristallisationtrick, den man als „Magnesium-Vergiftung" (magnesium poisoning) bezeichnet.

Lesen Sie weiter in diesem spannenden Portrait von Peter Seroka.
Appetithäppchen Bild
Zir­ko­nia, auch be­kannt als Zir­co­nia oder Fianit, be­zeich­net künst­lich her­ge­s­tell­te Ein­kri­s­tal­le aus Zir­co­ni­um(IV)-oxid (che­mi­sche For­mel: ZrO2), die in ih­rer ku­bi­schen Hoch­tem­pe­ra­tur­pha­se sta­bi­li­siert sind. Es han­delt sich da­bei um kein na­tür­lich vor­kom­men­des Mi­ne­ral. Im Jahr 1937 ent­deck­ten die Min ... mehrZirkonia, auch bekannt als Zirconia oder Fianit, bezeichnet künstlich hergestellte Einkristalle aus Zirconium(IV)-oxid (chemische Formel: ZrO2), die in ihrer kubischen Hochtemperaturphase stabilisiert sind. Es handelt sich dabei um kein natürlich vorkommendes Mineral. Im Jahr 1937 entdeckten die Mineralogen M. V. Stackelberg and K. Chudoba das natürliche Vorkommen von kubischem Zirkoniumoxid in Form mikroskopisch kleiner Körnchen in metamiktem Zirkon. Sie interpretierten diese Körnchen als Beiprodukt des Metamiktisierungsprozesse. Beide Mineralogen würdigten das Mineral nicht mit einem eigenen Namen, da ihnen dies damals unwesentlich erschien. Mittels Röntgendiffraktomie konnten sie die Existens des natürlichen Ebenbildes des künstlichen Produktes nachweisen.

Ein Beitrag von Klaus Schäfer
Appetithäppchen Bild
 
https://www.phillisverlag.de/Kalender-Shop/Mineralienkalender/
https://www.mineralbox.biz
https://vfmg.de/der-aufschluss/
https://www.juwelo.de
https://edelsteintage-bremen.de
https://fossilsworldwide.de/